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Near Infrared spectroscopy (NIRS) has been widely used in the discrimination (classi¯cation) of
pharmaceutical drugs. In real applications, however, the class imbalance of the drug samples, i.e.,
the number of one drug sample may be much larger than the number of the other drugs, deceases
drastically the discrimination performance of the classi¯cation models. To address this class
imbalance problem, a new computational method — the scaled convex hull (SCH)-based
maximum margin classi¯er is proposed in this paper. By a suitable selection of the reduction
factor of the SCHs generated by the two classes of drug samples, respectively, the maximal
margin classi¯er between SCHs can be constructed which can obtain good classi¯cation per-
formance. With an optimization of the parameters involved in the modeling by Cuckoo Search, a
satis¯ed model is achieved for the classi¯cation of the drug. The experiments on spectra samples
produced by a pharmaceutical company show that the proposed method is more e®ective and
robust than the existing ones.

Keywords: Drug classi¯cation; Near Infrared spectroscopy; class imbalance; scaled convex hulls.

1. Introduction

Near Infrared spectroscopy (NIRS) is applied in
diverse ¯elds due to its characteristics such as
rapidity, simplicity and nondestructive measure-
ments.1 It can provide highly sensitive, low-cost
and nondestructive analysis of various samples.6

However, the presence of the relatively weak and

highly overlapping spectral bands2 in the NIR

spectra poses a challenge for extracting information

from the samples. It is essential to apply compu-

tational methods to preprocess the measured spec-

tra and to build the analytical model in NIRS.
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Existing computational methods can be classi¯ed
into two categories: quantitative and qualitative.
Multiple linear regression (MLR),3 principal com-
ponent regression (PCR),4 partial least squares
(PLS),5–7 arti¯cial neural network (ANN),8 etc., are
typical quantitative methods. Classi¯cation trees,9

K nearest neighbor (KNN),10 support vectormachine
(SVM)11 and PLS-DA12 are commonly used in
qualitative analysis of NIR spectra. In this paper, we
focus on the quantitative analysis (classi¯cation) of
the pharmaceutical drug.

Althoughmany computationalmethods have been
proposed for the discrimination of the pharmaceutical
drug,2,13 there is a common drawback that the class
imbalance of the drug samples was not considered. In
real applications, di®erent drug classes may contain
very di®erent number of samples. Classi¯cation al-
gorithms that do not consider class-imbalance tend to
be overwhelmed by the majority class and ignore the
minority one. However, in many cases, the cost of
misclassifying a minor class example is usually more
expensive than that of misclassifying a major one.
Thus, it is necessary to design a classi¯cation algor-
ithm that is biased toward the minority class.

To address the class imbalance problem and
obtain the high classi¯cation accuracy in the drug
discrimination, the scaled convex hull (SCH)-based
maximum margin classi¯er is proposed in this
paper. With an optimization of the parameters
involved in the SCH modeling by Cuckoo Search,
we can produce a model that is biased toward the
minority class and has a good performance to detect
the genuine and counterfeit drug. Comparing with
PLS and SVM classi¯cation models, the exper-
iments on NIR samples of erythromycin ethylsuc-
cinate have shown that the SCH classi¯cation
model has better performance than the others.

2. Theory

2.1. SCH

Given a ¯nite training data set T ¼ ðx1; y1Þ;
ðx2; y2Þ; . . . ; ðxk; ykÞ, where xi is the feature or input
vector, yi ¼ þ1 or �1 is the class label or output
which indicates the membership of xi. The task of
computational methods is to learn a decision func-
tion fðxÞ from the training set that can predict the
membership of the unseen sample x.14 Generally,
x is given the label y ¼ þ1 if fðxÞ > 0, and y ¼ �1
otherwise.

For the SVM training algorithms ¯nding the
maximum margin between the two sets is equival-
ent to ¯nding the closest points between the convex
hulls that contain each class.16 X ¼ fxijxi 2 Rd;
I ¼ 1; 2 . . . ;Kg is de¯ned as14

convX ¼ !j!¼
Xk
i¼1

aixi;
Xk
i¼1

ai ¼ 1;ai � 0;xi 2X

( )
;

ð1Þ
where ai is the coe±cient. It can be seen that the
convex hull is the linear combination of the samples
with some constraint on the coe±cient.

The SCH generated by the sample set X ¼
fxijxi 2 Rd; I ¼ 1; 2 . . . ;Kg is de¯ned as

SðX; �Þ ¼ !j! ¼ �
Xk
i¼1

aixi þ ð1� �Þm;

(

Xk
i¼1

ai ¼ 1; 0 � ai � �;xi 2 X

)
: ð2Þ

It can also be rewritten as

SðX; �Þ ¼ !j! ¼
Xk
i¼1

aið�xi þ ð1� �ÞmÞ;
(

Xk
i¼1

ai ¼ 1; 0 � ai � �;xi 2 X

)
; ð3Þ

where m ¼ 1
k

Pk
i¼1 xi is the mean value of all

original points. The reduction factor � can be set to
di®erent size with the constraint that � < 1.15

It can be seen that the smaller the �, the smaller
is the size of SCH ðSðX; �ÞÞ. It is proved that no
matter how the � changes, the SCH has the same
geometric shape as the original convex hull, which
is the reason why we call it as Scaled Convex
Hulls.14 More details about the SCH can be seen
in Ref. 14.

Denote Xþ ¼ fxijyi ¼ þ1g and X� ¼ fxijyi ¼
�1g as the positive and negative sample set, re-
spectively. The SCH of the positive set can be
written as

SðXþ; �Þ ¼ !j! ¼
X
yi¼þ1

aið�xi þ ð1� �ÞmþÞ;
(

X
yi¼þ1

ai ¼ 1; 0 � ai � 1; xi 2 Xþ
)
; ð4Þ

where mþ ¼ 1
nþ

P
yi¼þ1 xiðnþ ¼ jXþjÞ is the mean

value of the positive points.
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Similarly, the SCH of the negative set can be
written as

SðX�; �Þ ¼ !j! ¼
X
yi¼�1

aið�xi þ ð1� �Þm�Þ
(

;

X
yi¼�1

ai ¼ 1; 0 � ai � 1;xi 2 X�
)
; ð5Þ

where m� ¼ 1
nþ

P
yi¼�1 xiðn� ¼ jX�jÞ is the mean

value of the negative points.
For convenience, we denote the \reduced" point

�xi þ ð1� �Þm as x 0
i, then the SCHs of the positive

and negative sample set, respectively can be
rewritten as

SðXþ; �Þ ¼ !j! ¼
X
yi¼þ1

aix
0
i

(
;

X
yi¼þ1

ai ¼ 1; 0 � ai � 1;x 0
i 2 X 0þ

)
; ð6Þ

SðX�; �Þ ¼ !j! ¼
X
yi¼�1

aix
0
i

(
;

X
yi¼�1

ai ¼ 1; 0 � ai � 1;x 0
i 2 X 0�

)
: ð7Þ

Furthermore, the reduction factor � can be set
di®erent for each class, re°ecting the importance of
each class.

2.2. SCH classi¯er

For nonlinear classi¯cation problems, the original
convex hull of the two classes, samples are over-
lapping as seen in Fig. 2(a). But by a suitable
selection of �, the SCHs become smaller (see Fig. 1),
and the initially overlapping convex hulls can be
reduced to become separable. Once separable, we

can ¯nd the maximum margin classi¯ers between
the two SCHs through the use of the nearest point
pair algorithms.17 Speci¯cally, the maximummargin
classi¯er is the hyperplane that bisects and is per-
pendicular to the segment of the nearest point pair.

The ¯nding of the nearest point pair between the
two SCHs can be described as the following op-
timization problem

min
�

1

2

X
yi¼þ1

aix
0
i �

X
yi¼�1

aix
0
i

�����
�����
2

s:t:
X
yi¼þ1

ai ¼ 1;
X
yi¼�1

ai ¼ 1;

0 � ai � 1; i ¼ 1; 2; . . . ; k

ð8Þ

where
P

i2I þ aix
0
i and

P
i2I� aix 0

i are the SCHs of
the positive and negative sample set and (8) pre-
sents the shortest distance of the pair of nearest
points between two SCHs.

It can be shown that (8) is a convex optimization
whose global optimal solution can be solved e±-
ciently. Suppose the optimal values are a� ¼ ða�

1;
a�
2; . . . ; a

�
kÞT , and the pair of nearest points are

simpli¯ed as c ¼ P
yi¼þ1 a

�
i x

0
i and d ¼ P

yi¼�1 a
�
i x

0
i.

The decision function in the feature space will
accordingly be of the form

fðxÞ ¼ ð!� � xÞ þ b�; ð9Þ
where w� ¼ c� d and b� ¼ � 1

2 ððc� dÞ � ðcþ dÞÞ.
The decision function obtains the maximum

margin between the two SCHs, so we called it
the SCH based maximum margin classi¯er. This
method can be easily nonlinearized through the
kernel trick.

2.3. SCH classi¯er for class imbalance

problem

In real applications, di®erent drugs may contain very
di®erent number of samples. Classi¯cation algorithmsFig. 1. The SCH of the positive sample set.15

(a) (b)

Fig. 2. The two SCHs become separable by a suitable
reduction factor.16
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that do not consider class imbalance tend to be
overwhelmed by the majority class and ignore the
minority one. But in many cases, the minority class
is more important to us. Thus, it is necessary to
design a classi¯cation algorithm that is biased
toward the minority class.

As said in Sec. 2.1, the reduction factor � can be
set di®erent for each class to re°ect the importance
of each class. This can be utilized to solve class
imbalance problems. For example, for the majority
class, we set a smaller � to make the corresponding
SCH smaller; for the minority class, we set a larger �
to make the corresponding SCH larger. By doing so,
the ¯nal decision function will move toward the
majority class, avoiding the minority class being
ignored, as shown in Fig. 3. Fig. 3(a) is the result
without considering class imbalance, and Fig. 3(b)
addresses the class imbalance by our SCH. Actually,
Fig. 3(b) illustrates an extreme case where the
minority class is not reduced, and it can be seen that
the resulting classi¯er is biased toward the minority
class, compared to that in Fig. 3(a).

3. Measurement of the Classi¯cation
Performance

3.1. Dataset

All the drug samples of NIR are produced by the
Xi'an-Janssen pharmaceutical factores and other
factories. To obtain a successive performance of the
spectrum samples, the vector normalization and
¯rst derivative (SNV-1st D)17 was applied to pre-
process the spectrum data of the drugs, which can
eliminate the o®set and drift caused by the spec-
trum deviation.5 After the processing, the spectrum
data were obtained as shown in Fig. 4. Then, the
PLS is applied to each sample spectrum to produce
a feature vector xi.

A sample xi is labeled positively yi ¼ þ1 if the
spectrum data is the genuine drug [see Fig. 4(a)] or
negatively yi ¼ �1 if the spectrum data are coun-
terfeit drug [see Fig. 4(b)]. Finally, the spectrum
dataset contains 171 positive and 78 negative drugs.

In order to build a true independent test, the
experiments are divided into three categories.
The ¯rst category, with the gradual decreasing of
training samples, does an independent test for the
classi¯cation performance of the SCH. It is used to
study the impact of the number of training data on
the classi¯ers' performance (see Secs. 4.1–4.3). The
second category which comprises the class imbal-
ance samples acts as the training samples (see
Sec. 4.4). The third category adopts the published
pharmaceutical tablet datasets to demonstrate the
classi¯cation performances of the SCH model (see
Sec. 4.5).

(a) (b)

Fig. 3. The SCHs for class imbalance problem.

(a) (b)

Fig. 4. The samples of NIRS.
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3.2. Experimental setting

In this paper, data processing and modeling were
performed using MATLAB 2012a (The Mathworks,
Natick, MA, USA). We experimentally determined
the parameters' best values for SVM models by grid
optimization. We focus on the RBF kernel for the
SCH, which, in practice, is the most widely used for
nonlinear SVMs.18 During the process of optimizing
the parameters of the SCH, Cuckoo Search19,20 is
also utilized for a suitable selection of the reduction
factor �. After obtaining the optimal parameters,
the SCH performs the classi¯cation comparison
with the PLS model and SVM model.

3.3. Measurement of classi¯er's

performance

Besides the classi¯cation accuracy, the F-measure is
used as the performance evaluation criteria of all
the models17 for the class imbalance problems,
which is amore stable measure, especially for data-
sets with huge class imbalance. The higher the
F-measure, the \better" the quality of the evidence
provided by overlaps from the class imbalance
sets.22 For the class imbalance in this paper,
F-measure and the classi¯cation accuracy are used
to assess the prediction performance.17

4. Results and Discussion

4.1. Experiments of discriminating the
samples from di®erent

manufacturers

In order to check the classi¯cation performances of
the SCH model for a kind of drug discrimination

from di®erent manufacturers, models are built for
recognizing two other types of erythromycin ethyl-
succinate tablet. One type is from the Xi'an-Janssen
pharmaceutical factory as the positive sample; other
type is from other manufacturers as the negative
sample. One type is from the Xi'an-Janssen phar-
maceutical factory; other type is from other manu-
facturers. It can be seen in Fig. 5 andTable 1 that the
SCH models obtain the obvious performance
improvement in comparison with the SVM and the
PLS models. As shown in Fig. 5(a), when the train-
ing sample has been large enough, the SVM has high
classi¯cation accuracy in the drug discrimination,
and adjusting the reduction factor dose not have any
more in°uence on the classi¯cation performances of
the SCH. Owing to the property of the
PLS algorithm, the ¯tting curve always exists the
accumulating deviation between the actual output
and prediction values as shown in Fig. 5. At the same
time, the PLS classi¯cation accuracy will be declined
with decreasing number of training samples.

4.2. Experiments of discriminating
di®erent drugs

Performance comparison is based on di®erent
tablets for discriminating erythromycin ethylsucci-
nate tablets by the SCH model in comparison with
other models. The results in Fig. 6 and Table 2 show
that the SCH models reach obvious performance
improvement in the drug discrimination by making
use of the constantly increasing types of other drugs
(see Fig. 6). It can be seen that the SCH model
perhaps has the potential to handle more problems
with small samples. And it has better classi¯cation
performance to discriminate the di®erent tablets
than other models.

(a) (b)

Fig. 5. The classi¯cation accuracy for the di®erent manufacturers samples.
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4.3. Experiments for the small

samples

For checking the classi¯cation performances of
the SCH model on the small training samples, we
experiment with a gradual increase of training
samples set. The results show that the SCH model is
superior than the PLS and SVM models in Table 3
and Fig. 7. When compared with the PLS and SVM

models, the results of the SCH model show that the

classi¯cation performance is improved combined

with Cuckoo Search research for selecting the re-

duction factor. The SCH model is an e±cient algor-

ithm to handle more problems with small samples as

shown in Fig. 7. For the invariant training samples,

the PLS classi¯cation accuracy has slightly increased

(see Fig. 7).

Table 1. Classi¯cation accuracy table for the di®erent manufactures samples.

Number of testing samples 10 20 30 40 50 60 70

Classi¯cation Accuracy
PLS 0.7000 0.6000 0.6000 0.5000 0.5400 0.5500 0.5429
SVM 1 0.9500 0.9667 0.9000 0.9800 0.9167 0.9000
SCH 1 1 1 0.9500 0.9800 0.9500 0.9429

F measure
PLS 0.7692 0.7143 0.7143 0.6667 0.6849 0.6897 0.6863
SVM 1 0.9524 0.9655 0.8889 0.9796 0.9231 0.9091
SCH 1 1 1 0.9474 0.9796 0.9492 0.9429

(a) (b)

Fig. 6. The classi¯cation accuracy for di®erent drug samples.

Table 2. Classi¯cation accuracy table for di®erent drugs samples.

Number of test samples 10 20 30 40 50 60 70

Classi¯cation Accuracy
PLS 1 0.9500 0.9667 0.9750 0.9800 0.9667 0.9286
SVM 1 0.9500 0.8000 0.9500 0.9400 1 0.9000
SCH 1 1 1 1 1 1 1

F measure
PLS 1 0.9655 0.9767 0.9825 0.9859 0.9767 0.9515
SVM 1 0.9630 0.8333 0.9630 0.9552 1 0.9231
SCH 1 1 1 1 1 1 1

Z. Liu, S. Jiang & H. Yang
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4.4. Experiments for the class
imbalance samples

The performance of the three models for the class
imbalance in the drug discrimination is shown in
Fig. 8 and Table 4, where the parameter a is
expressed as the imbalance level of the training
sample, i.e., the ratio of the number of minority
class samples and reducing the number of majority
class. As shown in Fig. 8, the SVM model is built by

using only the training examples on second category

dataset. The results indicate that the PLS method

gives poor performance to decline the classi¯cation

accuracy to 64.1% (see Fig. 8). A similar situation

also happens in the prediction using the PLS

method (see Fig. 8). The main reason for poor

performances reported by the PLS and SVMmodels

is that all examples are focused on as positive class

due to the small size of negative samples and a huge

(a) (b)

Fig. 8. The classi¯cation accuracy for the imbalanced samples.

Table 3. Classi¯cation accuracy table for the small samples.

Number of training samples 10 20 30 40 50 60 70 80 90 100 110 120

Classi¯cation accuracy
PLS 0.8760 0.8605 0.8605 0.8605 0.8605 0.8527 0.8837 0.8915 0.9690 0.9457 0.9690 0.9845
SVM 0.5891 0.9457 0.4729 0.5814 0.5426 0.5426 0.9612 0.9612 0.7209 0.6899 0.9845 0.9767
SCH 0.9302 0.9612 0.9467 0.9612 0.9225 0.9612 0.9612 0.9612 0.9690 0.9767 0.9922 0.9845

F measure
PLS 0.9328 0.9250 0.9250 0.9250 0.9250 0.9205 0.9356 0.9397 0.9823 0.9689 0.9820 0.9911
SVM 0.7006 0.9686 0.5750 0.6932 0.6550 0.6550 0.9780 0.9780 0.8085 0.7802 0.9909 0.9863
SCH 0.9610 0.9778 0.9545 0.9778 0.9545 0.9778 0.9780 0.9780 0.9818 0.9867 0.9955 0.9909

(a) (b)

Fig. 7. The classi¯cation accuracy for the small samples.
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imbalance of positive and negative examples in

training classi¯ers.21 Then, the SCH classi¯cation

accuracy is above 92.31% in Fig. 8, and it was

proved that the SCH model has higher classi¯cation

accuracy than other models. Thus, it can be inferred

that the SCH model is helpful to address the class

imbalance problem in the drug discrimination.

4.5. Experiments for the active substance
on pharmaceutical tablets dataset

To demonstrate the SCH method, we experiment
for the active substance on published pharma-
ceutical tablets dataset (http://www.models.kvl.
dk/Tablets). These tablets exist in four dosages
with only two di®erent concentrations of active

Table 4. Classi¯cation accuracy table for the imbalanced samples.

Positive (negative) sample 50 (50) 100 (50) 120 (40) 120 (30) 150 (30) 120 (20) 140 (20) 160 (20) 135 (15) 150 (15)

Imbalance level 01:01 02:01 03:01 04:01 05:01 06:01 07:01 08:01 09:01 10:01

Classi¯cation accuracy
PLS 0.9487 0.9487 0.6923 0.6667 0.7179 0.6410 0.7179 0.7179 0.7179 0.7179
SVM 1 0.9231 0.8718 0.8974 0.8718 0.9487 0.8974 0.8974 0.8974 0.8974
SCH 1 1 1 1 1 0.9487 0.9231 0.9231 0.9231 0.9231

F measure
PLS 0.9545 0.9545 0.7778 0.7636 0.7925 0.7500 0.7925 0.7925 0.7925 0.7925
SVM 1 0.9333 0.8936 0.9130 0.8936 0.9545 0.9130 0.9130 0.9130 0.9130
SCH 1 1 1 1 1 0.9545 0.9333 0.9333 0.9333 0.9333

Table 5. Classi¯cation accuracy table for the active substance on pharmaceutical tablets dataset.

Positive (negative) sample 40 (20) 60 (20) 80 (20) 100 (20) 120 (20) 140 (20) 160 (20) 180 (20)

Imbalance level 02:01 03:01 04:01 05:01 06:01 07:01 08:01 09:01

Classi¯cation accuracy
SVM 0.5556 0.8778 0.5556 0.4444 0.4444 0.6778 0.4444 0.4444
PLS 0.9778 0.9333 0.9222 0.7111 0.6778 0.6556 0.7000 0.6667
SCH 0.9778 0.9778 0.9778 0.8000 0.7889 0.7667 0.7222 0.7667

F measure
PLS 0.0000 0.8406 0.0000 0.6154 0.6154 0.7339 0.6154 0.6154
SVM 0.9750 0.9286 0.9176 0.7547 0.7339 0.7207 0.7477 0.7273
SCH 0.9750 0.9750 0.9750 0.8125 0.8081 0.7921 0.7619 0.7921

(a) (b)

Fig. 9. The classi¯cation accuracy for the active substance on pharmaceutical tablets dataset.
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substance (5mg (5.6%w/w), and 10, 15 and 20mg
(8.0%w/w) active substance per tablet).23 We con-
struct arti¯cial sets of patterns in the experiment to
discriminate the two di®erent concentrations for
pharmaceutical tablets spectrum, where the par-
ameter a is expressed as the imbalance level of the
training sample. Finally, we experiment to demon-
strate the best classi¯cation performances of the
SCH model. The results demonstrate that the SCH
method is the most e®ective for the class imbalance
(see Fig. 9 and Table 5).

5. Conclusion

To address the problem of imbalance of the drug
samples, i.e., a huge imbalance of positive versus
negative examples in training classi¯ers,21 the SCH-
based maximum margin classi¯er is proposed. The
SCH not only can address the imbalance, but also
transforms the nonlinear discrimination problems to
linear ones. With an optimization of the parameters
involved in the modeling by Cuckoo Search, a sat-
is¯ed model is achieved for the classi¯cation of the
drug. From comparison with other machine learn-
ing methods, the results demonstrate that the SCH
method is the most e®ective one for the class
imbalance in the drug discrimination.
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